Human microbiota plays an important role in maintaining human health. Dysbiosis, namely changes in composition of microbiota and accompanying breakage of homeostasis between human and microorganisms, may lead to development of several diseases. The latter could be potentially treated with probiotics. Unlike well-established per os application, local application of probiotics is limited due to the lack of delivery systems that could ensure preservation of probiotic viability, sufficient retention at the targeted areas and effective colonisation. Thus, in the scope of master thesis, we produced electrospun nanofibers with incorporated spores of model potential probiotic strain Bacillus sp. 25.2.M.
By optimizing formulation, process and environment parameters, polyethyleneoxide (PEO) nanofibers and composite nanofibers from PEO and chitosan in ratio 60/40 or 20/80 (w/w), were developed with subsequent incorporation of spores (2.7×105–7.3×105 spores/mg of nanofibers). During the production of nanofibers, a decrease in spore viability was observed, being the highest for nanofibers with chitosan due to lower pH value of the dispersions and harsher parameters of electrospinning. Using scanning electron microscopy, successful incorporation of spores into nanofibers was confirmed and significant difference in the average diameter observed between spore-loaded nanofibers (167–342 nm) and the same nanofibers without spores (110–177 nm). Results of differential scanning calorimetry showed lower crystallinity of PEO within all nanofibers. Using Fourier transform infrared spectroscopy, formation of hydrogen bonds between chitosan and PEO in nanofibers was confirmed, whereas interactions between spores and polymers could not be observed. Increasing the content of chitosan in nanofibers decreased the rate and extent of spore release from nanofibers in phosphate buffer and increased the time required for spore germination and outgrowth of bacteria from nanofibers in the solid agar. After 1-month storage at room temperature, 58% relative humidity and 40 °C, 75% relative humidity the content of viable spores in nanofibers did not decrease more than 0.32 log CFU/mg.
Biodegradability, high loading capacity for potential probiotics and preservation of their viability during storage, demonstrate the developed nanofibers as an innovative approach for potential local treatment of diseases, associated with dysbiosis.
|