izpis_h1_title_alt

Konstruktivna indukcija s samokodirniki in gručenjem
ID Kuhar, Yannick (Avtor), ID Robnik Šikonja, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,63 MB)
MD5: A4CD30D2E70787344D69F0CFCDAF93DD

Izvleček
Časovna kompleksnost algoritmov za gručenje je odvisna od dimenzionalnosti vhodnih podatkov, zato so počasni na visokodimenzionalnih podatkih. Problem bomo rešili z globokim samokodirnikom. Uporabili smo ga za kompresijo podatkov v manj dimenzij s čimmanjšo izgubo informacije. Reimplementirali in razširili smo postopek DeepCluster, ki so ga predlagali Tian et al [26]. Izvorno ogrodje podpira le algoritma za gručenje K-voditeljev in GMM. Razširili smo ga s hierarhičnim gručenjem, algoritmom DBSCAN in ansambelskim gručenjem. Ocenili smo kvaliteto gruč in samokodirnik interpretirali s konstruktivno indukcijo. Originalni in razširjeni postopek se v naših poskusih nista izkazala za uspešna, smo pa s konstruktivno indukcijo vizualizirali znanje modela in ga predstavili na razumljivejši način.

Jezik:Slovenski jezik
Ključne besede:gručenje, konstruktivna indukcija, interpretabilnost modelov, samokodirniki
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2020
PID:20.500.12556/RUL-116753 Povezava se odpre v novem oknu
COBISS.SI-ID:32331523 Povezava se odpre v novem oknu
Datum objave v RUL:08.06.2020
Število ogledov:1158
Število prenosov:234
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Constructive induction using autoencoders and clustering
Izvleček:
The time complexity of most clustering algorithms depends on the dimensionality of the input data and thus most clustering algorithms are slow on highdimensional data. To solve this problem, we trained a deep autoencoder and used it to compress the input data into a lower dimensional space with information loss. We reimplemented and extended the DeepCluster framework proposed by Tian et al [26]. The original framework supports only K-means and GMM clusterings. We extended it with hierarchical clustering, DBSCAN, and ensemble clustering. We evaluated the clusters and interpreted the autoencoder with constructive induction. Both frameworks proved to be unsuccessful in our experiments. However, we were able to interpret the model and visualize its knowledge

Ključne besede:clustering, constructive induction, model interpretability, autoencoders

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj