Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Gradient-type systems on unbounded domains of the Heisenberg group
ID
Molica Bisci, Giovanni
(
Avtor
),
ID
Repovš, Dušan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(430,81 KB)
MD5: 67A4C57A360B8519485F63AE15E75791
Galerija slik
Izvleček
The purpose of this paper is to study the existence of weak solutions for some classes of one-parameter subelliptic gradient-type systems involving a Sobolev-Hardy potential defined on an unbounded domain ▫$\Omega_\psi$▫ of the Heisenberg group ▫$\mathbb{H}^n = \mathbb{C}^n \times \mathbb{R} \, (n \ge 1)$▫ whose geometrical profile is determined by two real positive functions ▫$\psi_1$▫ and ▫$\psi_2$▫ that are bounded on bounded sets. The treated problems have a variational structure, and thanks to this, we are able to prove the existence of an open interval ▫$\Lambda \subset (0, \infty)$▫ such that, for every parameter ▫$\lambda \in \Lambda$▫, the system has at least two non-trivial symmetric weak solutions that are uniformly bounded with respect to the Sobolev ▫$HW^{1,2}_0$▫-norm. Moreover, the existence is stable under certain small subcritical perturbations of the nonlinear term. The main proof, crucially based on the Palais principle of symmetric criticality, is obtained by developing a group-theoretical procedure on the unitary group ▫$\mathbb{U}(n) = U(n) \times \{1\}$▫ and by exploiting some compactness embedding results into Lebesgue spaces, recently proved for suitable ▫$\mathbb{U}(n)$▫-invariant subspaces of the Folland-Stein space ▫$HW^{1,2}_0(\Omega_\psi)$▫. A key ingredient for our variational approach is a very general min-max argument valid for sufficiently smooth functionals defined on reflexive Banach spaces.
Jezik:
Angleški jezik
Ključne besede:
gradient-type system
,
Heisenberg group
,
variational methods
,
principle of symmetric criticality
,
symmetric solutions
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2020
Št. strani:
Str. 1724-1754
Številčenje:
Vol. 30, iss. 2
PID:
20.500.12556/RUL-116578
UDK:
517.956
ISSN pri članku:
1050-6926
DOI:
10.1007/s12220-019-00276-2
COBISS.SI-ID:
18728025
Datum objave v RUL:
28.05.2020
Število ogledov:
1048
Število prenosov:
407
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
The journal of geometric analysis
Skrajšan naslov:
J. geom. anal.
Založnik:
Springer Nature, Mathematica Josephina
ISSN:
1050-6926
COBISS.SI-ID:
30685696
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj