Introduction: Mammography has become the number one detection method of breast cancer in the recent years, especially through various preliminary screening programs. Mammogram analysis through computer aided detection has been established as a big aid to radiologists in early cancer detection rates. Computer aided detection (CADe) represents a segment of Computer aided diagnosis (CAD), both of which employ the methods of machine learning in their workings. One of prerequisites for efficient detection of tumor masses is adequate segmentation of presented breast tissue. This work is focused mainly on threshhold based segmentation, region based segmentation and segmentation based on learning. Purpose: We intended to establish the efficiency of segmentation methods and positive detection rates used in modern computer aided detection processes. Methods: A descriptive method was used to explain the basic concepts of segmentation and detection of cancer tissue in CADe methods through extensive study of available material on current research of the field in question. The results were presented in a qualitative manner with a commentary on efficiency and viability of methods used. Results: Studies, that tested their segmentation and CADe methods on the publicly available database Digital Datbase for Screening Mammography (DDSM), were reviewed. We compared selected studies from the field of computer aided detection and assesed their efficiency in breast tissue segmentation and positive detection rates of cancer mass. Discussion and conclusion: It was concluded that CADe methods adequately segment and detect cancer tissue in mammograms, but do not yet reach the efficiency of trained radiologists. It is evident that methods employing machine learning algorithms and clustering segmentation tend to produce better overall results than the rest of reviewed methods. The studied sources suggest there is a lack of uniform, publicly accessible mammogram databases that could be used to further research the field with practically comparable results. As such, CADe methods and the segmentation processes involved show promise in the future of automatic interpretation of mammography screening.
|