Podrobno

Girth-regular and edge-girth-regular graphs : master's thesis
ID Zavrtanik Drglin, Ajda (Avtor), ID Jajcay, Robert (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Potočnik, Primož (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,17 MB)
MD5: 9AD8527F2860966AFCBC0F24491C0B4A

Izvleček
In this work we discuss girth-regular and edge-girth-regular graphs. The signature of a vertex u in a graph is a k-tuple of integers, ordered from the smallest to the largest, where each integer represents the number of girth cycles that contain an edge, incident with u. We say that a graph is girth-regular, if every vertex has the same signature. If every edge is contained in the same number of girth cycles, the graph is edge-girth-regular. We present the known results about girth-regular and edge-girth-regular graphs, classify cubic graphs of both types up to girth 5, look at tetravalent edge-girth-regular graphs and present some constructions of infinite families of such graphs. We then present some new results on tetravalent edge-girth-regular graphs and the classification of tetravalent edge-girth-regular Cayley graphs of Abelian groups.

Jezik:Angleški jezik
Ključne besede:graph, girth, girth-regular, edge-girth-regular
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2019
PID:20.500.12556/RUL-111548 Povezava se odpre v novem oknu
UDK:519.1
COBISS.SI-ID:18739289 Povezava se odpre v novem oknu
Datum objave v RUL:03.10.2019
Število ogledov:1710
Število prenosov:291
Metapodatki:XML DC-XML DC-RDF
:
ZAVRTANIK DRGLIN, Ajda, 2019, Girth-regular and edge-girth-regular graphs : master’s thesis [na spletu]. Magistrsko delo. [Dostopano 4 maj 2025]. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=111548
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Ožinsko-regularni in povezavno-ožinsko-regularni grafi
Izvleček:
Magistrska naloga obravnava ožinsko-regularne in povezavno-ožinsko-regularne grafe. Podpis vozlišča u v grafu je k-terica celih števil, urejenih po velikosti od najmanjšega do največjega, kjer vsako število predstavlja število ožinskih ciklov, v katerih je vsebovana posamezna povezava, incidenčna z u. Pravimo, da je graf ožinsko-regularen (oz. tipa GR), če imajo vsa vozlišča v grafu enak podpis. Če velja, da je vsaka povezava v grafu vsebovana v enakem številu ožinskih ciklov, pravimo, da je graf povezavno-ožinsko-regularen (oz. tipa EGR). V delu predstavimo že znane rezultate o grafih tipa GR in EGR, posebej natančno pregledamo kubične grafe obeh tipov in tetravalentne grafe tipa EGR ter nekaj konstrukcij neskončnih družin takih grafov. Nato predstavimo nekaj novih rezultatov o grafih tipa EGR in klasifikacijo vseh tetravalentnih Cayleyevih grafov Abelovih grup – kaj mora veljati, da je tak graf lahko tipa EGR, ter v koliko ožinskih ciklih se potemtakem lahko nahaja vsaka povezava tega grafa.

Ključne besede:graf, ožina, ožinsko-regularen, povezavno-ožinsko-regularen

Podobna dela

Podobna dela v RUL:
  1. Slovenska recepcija Gabriela d'Annunzia
  2. Sam Shepard's drama
  3. Danilo Dolci in Slovenija
  4. Leposlovje v Družinskem tedniku od 1938 do 1945
  5. Dve antologiji dveh poezij dveh pesnikov
Podobna dela v drugih slovenskih zbirkah:
  1. Hitzak
  2. La recepción de la literatura infantil y juvenil Argentina en Eslovenia
  3. Gabriel García Márquez in njegove prevajalke
  4. Poti v preteklost
  5. Vladimir Nabokov v zamaknjenju

Nazaj