izpis_h1_title_alt

Zlivanje bioloških podatkov z uporabo večmodalnih nevronskih mrež in razcepa matrik
ID Podgoršek, Lovro (Avtor), ID Curk, Tomaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,34 MB)
MD5: 183DEF9D9AA1EF22DB99334E9785AD3E

Izvleček
Vsako leto se na področju bioinformatike izvede na stotine novih raziskav. Rezultati le teh so razdrobljeni po različnih podatkovnih bazah, ki so med seboj nepovezane, ali pa sploh niso dostopne preko spleta. Vse več znanstvenikov zanima, če bi lahko te podatke združili in izluščili odvisne medsebojne povezave med podatki. V magistrskem delu predlagamo algoritem in podatkovno strukturo za združevanje podatkov ter se osredotočimo na iskanje skritih povezav z večmodalno konvolucijsko nevronsko mrežo tipa samokodirnik. Predlagano rešitev ovrednotimo z algoritmom matričnega razcepa DFMF. V nalogi pokažemo, da stiskanje in razširjanje različnih podatkov v skupen nižje dimenzionalni prostor odkrije odvisne medsebojne povezave med podatki.

Jezik:Slovenski jezik
Ključne besede:Bioinformatika, podatkovno zlianje, nevronske mreže, matrični razcep
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2019
PID:20.500.12556/RUL-110542 Povezava se odpre v novem oknu
COBISS.SI-ID:1538364867 Povezava se odpre v novem oknu
Datum objave v RUL:16.09.2019
Število ogledov:1388
Število prenosov:283
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Data fusion of biological data using multimodal neural networks and matrix factorization
Izvleček:
Biological research is conducted yearly in the field of bioinformatics. However, their outcomes and insights remain scattered across different unconnected databases, that are often not accessible online. There is an increased interest in the science community to connect these datasets and uncover potential relationships. The thesis presents an algorithm and data structure for connecting multiple datasets, and thereby focuses on uncovering data relationships with the method of multimodal convolution autoencoder. The solution is evaluated by the DFMF matrix factorization alghorithm. The results show that encoding and decoding data to a common lower dimensional space reveals dependent data relationships.

Ključne besede:Bioinformatic, data fusion, neural network, matrix factorization

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj