Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Few islands approximation of Hamiltonian system with divided phase space
ID
Bunimovich, Leonid A.
(
Avtor
),
ID
Casati, Giulio
(
Avtor
),
ID
Prosen, Tomaž
(
Avtor
),
ID
Vidmar, Gregor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,10 MB)
MD5: 2B41994B80DDEB784AB8E364C9D226C5
URL - Izvorni URL, za dostop obiščite
https://www.tandfonline.com/doi/full/10.1080/10586458.2018.1559777
Galerija slik
Izvleček
It is well known that typical Hamiltonian systems have divided phase space consisting of regions with regular dynamics on KAM tori and region(s) with chaotic dynamics called chaotic sea(s). This complex structure makes rigorous analysis of such systems virtually impossible and significantly complicates numerical exploration of their dynamical properties. Hamiltonian systems with sharply divided phase space between regions of regular and chaotic dynamics are much easier to analyze, but there are only few cases or families of such systems known to date. In this article, we outline a new approach for a systematic construction, starting from a generic KAM Hamiltonian system, of a system with a sharply divided phase space with an arbitrary number of regular islands which are in one-to-one correspondence with islands of the initial KAM system. In this procedure a typical Hamiltonian system, for example a KAM billiard, is replaced by a sequence of Hamiltonian systems having an increasing (but finite) number of islands of regular motion. The islands in the substituting systems are sub-islands of the KAM islands in the initial system. We apply this idea to two-dimensional lemon-shaped billiards, where the substituting systems are obtained by replacing parts of the curved boundaries by chords, so that in the limit of infinite number of islands the boundary of the substituting system becomes arbitrary close to the original billiard’s boundary.
Jezik:
Angleški jezik
Ključne besede:
dynamical systems
,
Hamiltonian systems
,
chaos
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2019
Št. strani:
10 str.
PID:
20.500.12556/RUL-107408
UDK:
530.182
ISSN pri članku:
1058-6458
DOI:
10.1080/10586458.2018.1559777
COBISS.SI-ID:
3300964
Datum objave v RUL:
11.04.2019
Število ogledov:
1743
Število prenosov:
580
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Experimental mathematics
Skrajšan naslov:
Exp. math.
Založnik:
Jones and Bartlett Publishers
ISSN:
1058-6458
COBISS.SI-ID:
2689113
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
dinamični sistemi
,
Hamiltonski sistemi
,
kaos
Projekti
Financer:
EC - European Commission
Program financ.:
H2020
Številka projekta:
694544
Naslov:
Open many-body non-equilibrium systems
Akronim:
OMNES
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj