V članku obravnavamo polinomske konične optimizacijske probleme, kjer je dopustna množica definirana z omejitvami, da morajo biti dani polinomski vektorji v danih nepraznih zaprtih konveksnih stožcih. Dodatno morajo dopustne rešitve zadoščati pogoju nenegativnosti. Ta družina problemov zajema zlasti klasične probleme polinomske optimizacije (POP), probleme polinomske semidefinitne optimizacije (PSDP) in probleme polinomske optimizacije nad stožci drugega reda (PSOCP). Predlagamo novo splošno hierarhijo linearnih koničnih optimizacijskih poenostavitev, ki naravno sledijo iz razširitve Pólya-jevega izreka o pozitivnosti iz Dickinson in Povh (J Glob Optim 61 (4): 615-625, 2015). Ob nekaterih klasičnih predpostavkah te poenostavitve monotono konvergirajo k optimalni vrednosti izvirnega problema. Kot zanimivost pokažemo, da dodajanje posebne redundantne omejitve k osnovnemu problemu ne spremeni optimalne rešitve tega problema, a bistveno izboljša kvaliteto poenostavitev. V članku tudi predstavimo obsežen seznam številčnih primerov, ki jasno kažejo na prednosti in slabosti naše hierarhije.
|