Projekcija visokodimenzionalnih podatkov se običajno pripravi z zmanjšanjem dimenzionalnosti, ki se predstavi v latentnem prostoru, kar omogoča smiselno vizualizacijo. Pripravili smo sintetične podatke, ki odražajo gensko izražanje v pravih podatkovnih zbirkah. Metode smo kasneje testirali na pripravljenih sintetičnih in pravih podatkih. V tem delu smo obravnavali naloge z izvajanjem regularizirane SVD metode, z uporabo L0-norme in L1-norme. Modelu je bila dodana informacija z regularizacijo dveh dodatnih matrik sosednosti. Pokazali smo, da so te metode dale boljše rezultate kot standardni SVD.
|