Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Many-body quantum chaos: analytic connection to random matrix theory
ID
Kos, Pavel
(
Avtor
),
ID
Ljubotina, Marko
(
Avtor
),
ID
Prosen, Tomaž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,49 MB)
MD5: 80FE63782F57113279EAF6A09B62499B
URL - Izvorni URL, za dostop obiščite
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021062
Galerija slik
Izvleček
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985)] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K(t) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004)]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behavior which are termed the “many-body localized phase” and “ergodic phase.” In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K(t) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1/2 models in a periodically kicking transverse field. In particular, we relate K(t) to partition functions of a class of twisted classical Ising models on a ring of size t; hence, the leading-order RMT behavior K(t)≃2t is a consequence of translation and reflection symmetry of the Ising partition function.
Jezik:
Angleški jezik
Ključne besede:
statistical physics
,
strongly correlated systems
,
quantum mechanics
,
quantum statistical mechanics
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2018
Št. strani:
Str. 021062-1-021062-11
Številčenje:
Vol. 8, iss. 2
PID:
20.500.12556/RUL-101522
UDK:
536.93
ISSN pri članku:
2160-3308
DOI:
10.1103/PhysRevX.8.021062
COBISS.SI-ID:
3208036
Datum objave v RUL:
13.06.2018
Število ogledov:
2045
Število prenosov:
671
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Physical review
Skrajšan naslov:
Phys. rev., X
Založnik:
American Physical Society
ISSN:
2160-3308
COBISS.SI-ID:
19686152
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
13.06.2018
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
statistična fizika
,
močno korelirani sistemi
,
kvantna mehanika
,
kvantna statistična mehanika
Projekti
Financer:
EC - European Commission
Program financ.:
H2020
Številka projekta:
694544
Naslov:
Open many-body non-equilibrium systems
Akronim:
OMNES
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj